
Lecture 04:
Pruning Strategies for Efficient 

DNN Implementation



2

Notes
● Lab1 will be released this week!
● Lab0 will be posted to help you understand DNN pruning.



3

Recap
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning



4

Topics
● Why pruning?

○ Reduce running cost
○ Reduce storage 

● General pruning techniques
● Transformer pruning
● Large model pruning



5

Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Convolution

 = 

 * 

  = * 

 * 
Filter Output feature mapInput feature maps

=

 = 

  =

 +  + 

Step 1 Step 2

H

W

C



6

Convolution

...

Output feature 
maps

E

F

M

...

...

...

Filters

H

W

C

Input feature 
maps

...
...

R
S

C

M filters



7

Convolution

...

...

......

Filters

Output feature 
maps

...

H

W

C

E

F

M

Input Feature 
maps ...

R
S

C

M filters



8

Convolution

...

......

Filters

Output feature 
maps

H

W

C

E

F

M

Input Feature 
maps ...

...
...

R
S

C

M filters



9

Computational Cost of Convolution

...

......

Filters

Output Feature 
maps

H

W

C

E

F

M

Input Feature 
maps

...

● Number of MACs: M×C×R×S×E×F
● Storage cost: 32×(MCRS+CHW+MEF)
● The input activation and output activations are transient storage, can be 

eliminated once this layer is finished processing.

...
...

R
S

C

M

… …

R
S

Number of 
MACs=RSE

F

H

W

M filters

*



10

Convolution with Sparse Weight

● Number of MACs: (1-p)×M×C×R×S×E×F
● Weight pruning can reduce the computations.
● Sparse weight matrices can be stored more efficiently, which helps minimize memory usage.

… …

R
S

Number of nonzero 
MACs=(1-p)RS

If p percent of the 
weights are zeros 



11

Convolution with Sparse Weight

● Number of MACs≥(1-p)×(1-q)×M×C×R×S×E×F
● Input pruning can also reduce the computations.
● Sparse input and weight matrices can be stored more efficiently, which helps minimize 

memory usage.

… …

R
Number of 
nonzero MACs
≥(1-p)(1-q)RS

If p percent of the weights are zeros, 
and q percent of input are zeros

S



12

Convolution with Sparse Weight

● Activation sparsity requires online pruning, which leads to additional overhead for 
sorting.

Weight 
pruning

Offline Online

Activation
pruning

*

Step 2Step 1



13

Computational Cost for MLP

softm
ax

Bx2 Bx3

2x3

● B is the batch size
● Number of MACs: 

○ Bx2x3 = 6B
● Storage cost: 

○ 6 x 32 = 192 bits (Weights)
○ (2B + 3B) x 32 bits (Activation)



14

Transformers

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

+

Layernorm

GeLU

+

linear

linear

Self attention block
(SA)

LayerNorm

Y

Y

Feed forward block
(FFN)

Z

Feedforward 
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

X

● The input sentence has three dimensions:
○ B: batch
○ L: sequence length (number of words)
○ E: embeddings



15

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

+

Layernorm

Y

X

Computational Cost of Transformer

linearE×E

B×L×E

B×L×E

B×L×E

B×L×L

QKT

B×L×E

B×L×E2 B×L2×E

x

B×L×L

B×L×E

B×L×E

B×L2×E

Total = 4B×L×E2 + 2B×L2×E



16

Computational Cost of Transformer

GeLU

+

linear

linear

LayerNorm

Y

Z

linearE×4E

B×L×E

B×L×4E

linear4E×E

B×L×4E

B×L×E

B×L×4E2 B×L×4E2

Total = 4B×L×E2 + 2B×L2×E + 8B×L×E2

  = 12B×L×E2 + 2B×L2×E



17

Computational Cost of Transformer

(1-p)E×E

B×L×E

B×L×E

E×E

B×L×E

B×L×E

linear linear

Nonzero MACs
=(1-p)×B×L×E2

If p percent of the 
weights are zeros 

(1-p)E×E

B×(1-q)(L×E)

B×L×E

linear

Nonzero MACs
≥(1-p)(1-q)×B×L×E2

If p percent of the 
weights are zeros 

If q percent of the input 
activations are zeros 



18

Topics
● Why pruning?

○ Reduce running cost
○ Reduce storage 

● General pruning techniques
● Transformer pruning
● Large model pruning



19

Pruning

● Pruning reduces both computational demands and storage costs.

 weight filter

0.1 3  1 3-10.4

0.2 -1 3 -1

-8 -20.1 -1-70.11.40.6-1

Prune if |w|<1

0.2 0.4 0.6

1.2 0.50.2 -3 -30.2

0.2

0.1

0 3  1 3-10 0 0 00

0 -1 3 -11.2 00 -3 -30

-8 -20 -1-701.40-1 0



20

Benefit of Pruning
● Reduce computational complexity

○ To support sparse matrix with random sparsity pattern, specialized 
hardware is required.

● Reduce the storage complexity
○ To achieve it, we need to encode the sparse weights.
○ Encoding the activations requires additional computation.

Activation
pruning

*

memory
Encoder



21

Sparse Matrices Encodings
● Efficient encoding scheme for sparse matrix storage.

○ Bitmap
○ Run Length Encoding (RLE)
○ Coordinate format (COO)
○ Compressed sparse row (CSR), Compressed sparse column (CSC)



22

Bitmap Encoding

0 3  1 320 0 0 00

[3,1,2,3]   [0,1,0,1,0,0,1,1,0,0]
value

Bitmap encoding

Indices

● In summary, the storage cost of bitmap 
encoding (in bits) is:
(1-p)✕L✕n + L

● n: number bits per value
● L: number of elements
● p: sparsity (%)

● Bitmap is effective for compressing the tensors of low or moderate sparsity.
● Encoding cost is low.



23

Run Length Encoding (RLC)

0 3  1 320 0 0 00

[3,1,2,3]  Value

RLC
Zero runs 

length

● Record the values and length of zero runs between the values.
● Assume 2 bits are used to encode the length of zero runs (0-3).
● Each value requires 2 bits.

 [01,01,10,00,10][11,01,10,11]  

 [1,1,2,0,2]

● RLC can reduce storage requirement when sparsity is moderate.



24

Run Length Encoding (RLC)

0 3 320 0 0 00

[3,0,2,3] 

0

Value
Zero runs 

length

RLC

● Record the values and length of zero runs between the values.
● Assume 2 bits are used to encode the length of zero runs (0-3).
● Each value requires 2 bits.

 [1,3,0,0,2]

 [01,11,00,00,10][11,00,10,11]  
● RLC can reduce storage requirement when sparsity is moderate.
● Hard to formulate it analytically.



25

Coordinate Format (COO)

0 3  1 320 0 0 00

[3,1,2,3]   
value

COO

Indices

● COO is efficient with the sparsity level is 
extremely high.

● The storage cost (in bits) is: (1-p)✕L✕n + (1-p)
✕L✕Ceil(log2L)

● n: number bits per value
● L: number of elements
● p: sparsity (%)

 [001,011,110,111][11,01,10,11]  

[1,3,6,7]

3 bits per index



26

Coordinate Format (COO)

● COO is efficient with the sparsity level is extremely high.

0 3  1 00
320 0 0

[3,1,2,3]   
value

COO

x _Indices

 [01,11,01,10][11,01,10,11]  

[0,0,1,1]
y _Indices
[1,3,1,2]

 [00,00,01,01]
2 bits per index



27

Compressed Sparse Row/Column (CSR/CSC)

● CSR/CSC is also suitable for matrices with high sparsity.
● The row index specifies the amount of nonzero values within each row.

V         = [ 10 20 30 40 50 60 70 80 ]
COL_INDEX = [  0  1  1  3  2  3  4  5 ]   
ROW_INDEX = [  0  2  4  7  8 ]

Sparse matrix Encoded form



28

Encoding Approaches Tailored to Different Sparsity Levels

● Different encoding scheme can be applied for different sparsity levels.

Hoefler, Torsten, et al. "Sparsity in deep learning: Pruning and growth for efficient inference and training in neural 
networks." Journal of Machine Learning Research 22.241 (2021): 1-124.



29

Topics
● Why pruning?

○ Reduce running cost
○ Reduce storage

● General pruning techniques
● Transformer pruning
● Large model pruning



30

Pruning Criteria: Magnitude Pruning

0.1 3  1 3-10.4 0.2 0.4 0.60.2

0 3  1 3-10 0 0 00

● We can prune the weights using 
the importance score:

■ Magnitude 
■ Gradient
■ Hessian
■ …

Magnitude 
pruning



31

Drawbacks of Magnitude Pruning

0.1 3  1 3-10.4 0.2 0.4 0.60.2

0 3  1 3-10 0 0 00

Magnitude 
pruning

● The major drawback of magnitude based pruning is that it does not 
consider the impact of the input when making the pruning decision.

0.1 3  1 3-10.4 0.2 0.4 0.60.2



32

Drawbacks of Magnitude Pruning

0.1 3  1 3-10.4 0.2 0.4 0.60.2

0 3  1 3-10 0 0 00

Magnitude 
pruning

● The major drawback of magnitude based pruning is that it does not 
consider the impact of the input when making the pruning decision.

10 0.1  0.3 30.2 4  2 0.4 6.58
✖



33

Pruning Criteria: Training Loss Change

Xtraining

linear

linear

L=0.01

linear

linear

L=1.33

Xtraining

Dtraining: is the training dataset
Fw(.): neural network function with parameter w.
L(.): Training loss function

● Another pruning principle is to minimize the impact on training loss as much as possible. 
● For a trained DNN, L(.) remains low.
● Training loss is typically computed over either a subset or the entire training dataset.



34

Pruning Criteria: Training Loss Change

Xtraining

linear

L=0.01

linear

L=0.14

Xtraining

Dtraining: is the training dataset
Fw(.): neural network function with parameter w.
l(.): loss function

w=w’=0w=w

● Another pruning principle is to minimize the impact on training loss as much as possible. 
● For a trained DNN, L(.) remains low.



35

Pruning Criteria: Training Loss Change

● Pruning criteria:
○ Keep the change on training loss 

as small as possible
○ Let L(.) denote the training loss
○ For trained DNN, L(.) will be low.

● If w is pruned, then we have w’=0:

● We can use it as the pruning criteria
○ Sort the weight based on the product 

of gradient and its value.



36

Pruning Criteria: Training Loss Change

● When reflecting on each individual value, 
the pruning criteria becomes:

● Multiple approaches have been propose to 
estimate the Hessian:

○ Empirical Fisher (Outer Product of 
Gradients)

LeCun, Yann, John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems 
2 (1989).

The gradient is usually estimated to zero.



37

Granularity of Pruning

Xtraining

linear

linear

L=0.01

linear

linear

L=1.33

Xtraining

P
runing linear

linear

L=1.33

Xtraining

P
runing

P
runing

linear

linear

L=1.33

Xtraining

P
runing

P
runing



38

Computational Flow of Pruning

✖

P

Flow with pruning

W’W

A

Y Z

= 0 if W is pruned, otherwise = 1 

W

A

✖ Y Z

Original flow

ReLU

Y = WA, Z = ReLU(Y)

ReLU



39

Computational Flow of Pruning

✖

P1

Flow with pruning

W’W

A
Y Z

= 0 if W is pruned, otherwise = 1 

W

A

✖ Y Z

Original flow

ReLU

Y = WA, Z = ReLU(Y)

ReLU
P2 A’

A



40

Backward Pass of Pruning Operation

0.1 3  1 3-10.4 0.2 0.4 0.60.2

0 3  1 3-10 0 0 00

Pruning

0.1 0.4 0.2 0.9 0.5 0.4 0.1 0.20.7 0.7

0 0.4 0.9 0.5 0.40 0 0 0 0

● During backward pass, the gradients of the pruned elements are masked.



41

Pytorch Implementation of Iterative Pruning

    def forward(self, x):

        y = F.conv2d(self.w, x)

        return y

    mask = nn.Parameter(... requires_grad=False)

    For w in each layer:

mask = mask_Prune(w, mask, percent)

w = w * mask

…

    def forward(self, x):

        y = F.conv2d(self.w, x)

        return y

    …

    

Fake pruning to stimulate the 
impact of sparse weight on 
the model accuracy!



42

Regularization-based Pruning

Source:https://satishkumarmoparthi.medium.com/why-l1-norm-creates-sparsity-compared-with-l2-norm-3c6fa9c607f4#:~:text=The%20reason%20for%2
0using%20the,and%20thus%20a%20sparse%20solution.

Lasso
● Add this term can make DNN naturally select the unimportant weight during the training process.



43

Regularization-based Pruning

y = x2

y = |x|

y = 2x

y = sign(x)



44

Taxonomy of Pruning
● Pruning techniques can be classified from different perspectives

○ Iterative pruning, zero-shot pruning
○ Structured pruning, unstructured pruning, N:M pruning
○ Weight pruning, activation pruning
○ Static pruning and dynamic pruning
○ Pruning for inference, pruning for training



45

When to Prune?

Train → Prune
(zero-shot pruning)

Train    Prune
(Iterative pruning)

● Usually interactive pruning has the best accuracy performance, however, it also requires 
multiple rounds of training and computational cost.

● Zero-shot pruning also termed post-training pruning.

Prune part of 
the weight

Resultant 
model

If the target 
sparsity ratio 

is not met

Retrain the 
current model

← →



46

Iterative Pruning

Xtraining

linear

linear

L=0.01

linear

linear

L=1.33

Xtraining

linear

linear

L=0.07

Xtraining

L=1.57

Xtraining

linear

linear

L=0.10

Xtraining

linear

linear
…

Round 1 Round 2



47

Lottery Ticket Hypothesis

“A randomly-initialized, dense neural network contains a 
subnetwork that is initialized such that—when trained in 
isolation—it can match the test accuracy of the original network 
after training for at most the same number of iterations. ”

Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 
2018." arXiv preprint arXiv:1803.03635 (1810).



48

How to Find the Winning Tickets?

● Initialized DNN with random weights w0.
● While the sparsity level has not reached:

○ Train the DNN with k epochs until convergence
○ prune p% of the nonzero weights.
○ Reinitialize the remaining weights using the values in w0, finetune the remaining weights for k 

epochs (Rewind).
● Return the weights.

● Iterative Magnitude Pruning (IMP):

● Later work has shown that rewind to wi (i is small) works better for larger networks.

Frankle, Jonathan, et al. "Stabilizing the lottery ticket hypothesis." arXiv preprint arXiv:1903.01611 (2019).



49

Weight Rewinding

● The pruned architecture itself, rather than a set of inherited “important” weights, is more crucial to 
the accuracy in the final model, which suggests that in some cases pruning can be useful as an 
architecture search paradigm.

Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018).

Initial DNN with W0 

Training
Prune p% 
weights Retraining

Result weights

Initial DNN with W0 

Training
Prune p% 
weights Rewinding Retraining

Resultant weightsRewind to W0 or Wi 
(i is small)

Conventional iterative pruning

Conventional iterative pruning with weight rewinding



50

Taxonomy of Pruning
● Pruning techniques can be classified from different perspectives

○ Iterative pruning, zero-shot pruning
○ Structured pruning, unstructured pruning, N:M pruning
○ Weight pruning, activation pruning
○ Static pruning and dynamic pruning
○ Pruning for inference, pruning for training



51

Unstructured/Structured Pruning

...

... ... ......
FilterKernelSpatialUnstructuredOriginal weight 

filter

● Structured pruning is amenable to hardware performance, due to the regular sparsity 
distribution.



52

Unstructured/Structured Pruning

Mao, Huizi, et al. "Exploring the granularity of sparsity in convolutional neural networks." Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition Workshops. 2017.

● Unstructured sparsity has a better accuracy than structured sparsity.
● We can apply the same method as the unstructured pruning to prune a group of 

parameters.



53

Structured Pruning

● In magnitude-based weight filter pruning, we first compute the sum of absolute weight 
values within each filter, then rank the filters and prune those with the smallest sums.

● Similarly, structured pruning can be performed by assessing the importance of a weight 
group through the sum of their importance scores.



54

Network Slimming

● We associate a scaling factor (from a batch normalization layer) with each filter in convolutional 
layers. Sparsity regularization is imposed on these scaling factors during training to 
automatically identify unimportant filters. 

Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE 
international conference on computer vision. 2017.

|pi|
i



55

Batch Normalization

● For each channel c, we have:
○ Xc: (HW x B)
○ μc and δc are the mean and standard deviation of Xc.
○ αc and βc are learnable parameters
○ αc, βc, μc, δc are scalers

● Overall, we have:
○ μ, δ, α and β all have a length of of C
○ μ, δ, α and β are all fixed during the inference
○ μ, δ are statistics based on the training dataset

Xc

X: HW ✕ B ✕ C

B

x
For each c∈C



56

 XM

Batch Normalization: During Inference

 X1

...

Output feature 
maps

...

...

Filters

H

W

C

Input Feature 
maps

● pc can be merged into the CNN weights.
● qc can be merged into the CNN bias.

...
...

...

● Given all the parameters are fixed, for each channel c, we have:

Batch 
Normalization

Conv



57

Batch Normalization

...

...
Filters

H

W

C

Input Feature 
maps

...
...

...

● For each channel c, we have:

✖ p1

✖ p2

✖ 
pM

Conv

● We can fold in the p and q to 
the weights and bias of 
convolutional layer during 
inference and reduce the online 
computational cost.



58

Network Slimming
● Lasso regularization is imposed on the 

scaling factors of batch normalization during 
training to automatically identify unimportant 
channels. 

● g(.) is the lasso l1-norm g(.) = Σ|pi|

● The unimportant channel are naturally 
eliminated during the training process.

...

Input Feature 
maps

Add a lasso loss on pi

Liu, Zhuang, et al. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE 
international conference on computer vision. 2017.

...

Filters

...
...

...

✖ p1

✖ p2

✖ 
pM

|pi|
i



59

N:M Sparsity

2:4 pruning
Column wise 
Compression

0.2 -0.4

0.4 -0.4

0.3 0.5

0.10.4
Dense 

weight tensor
Compressed
weight tensor

2:4 sparse 
weight tensor

1 2

0 2

1 3

1 3

+

-0.1 0.2 -0.4 0.3

0.4 -0.2 -0.4 -0.1

0.2 0.3 -0.1 0.5

0.10.4 0.1-0.2

0.2 -0.4

0.4 -0.4

0.3 0.5

0.10.4
Indices
(ind_w)

● N:M sparsity is proposed as a middleground between structured and unstructured 
sparsity.

● 2:4 sparsity is supported in Nvidia V100 GPUs.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

● DNN with structured sparsity can 
be easily adopted for acceleration, 
but incur low accuracy.

● On the other hand, DNN with 
unstructured sparsity is hard to 
accelerate.



60

N:M Sparsity

● N:M sparsity is proposed as a middleground between structured and unstructured 
sparsity.

● 2:4 sparsity is supported in Nvidia V100 GPUs.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



61

Cascade Effect of Filterwise Pruning in CNN

Cin

Convolution of layer i Convolution of layer i+1BN+ReLU of layer i

Zero inputs

...

Fi
lte

r

Fi
lte

r

● Assume the bias of the batch normalization is zero.
● Filter pruning at layer l can also result in weight and input sparsity in layer l+1.
● When the bias is not zero, the feature maps of layer i+1 will contain a uniform constant value.



62

Taxonomy of Pruning
● Pruning techniques can be classified from different perspectives

○ Iterative pruning, zero-shot pruning
○ Structured pruning, unstructured pruning, N:M pruning
○ Weight pruning, activation pruning
○ Static pruning and dynamic pruning
○ Pruning for inference, pruning for training



63

Pruning on Input Activation
● Why pruning can not be applied to input activation?

○ Large computing cost to determine the importance scores.
○ Due to the usage of ReLU, activation in CNN are 50% sparse, but with 

irregular sparsity distributions.

-0.4 0.3 0.1 0.1

0.5 -0.3 0.3-0.1

-0.1 0.2 -0.1 0.6

 0.3-0.2 0.50.4

0 0.3 0.1

0.6

0.5

0.3

0

0 0.50.4

0 0

0.2 00

0

0.3 0.1 0.60.5

0.30.2 0.50.4

+

2:4 ReLU
Row wise 

Compression

Dense 
Input tensor

Compressed
Input tensor

2:4 sparse 
data tensor

Indices
(ind_a)

2

0

3

1

3

0

1

0

Zhang, Sai Qian, et al. "JointNF: Enhancing DNN Performance through Adaptive N: M Pruning across both Weight and 
Activation." Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design. 2024.



64

Taxonomy of Pruning
● Pruning techniques can be classified from different perspectives

○ Iterative pruning, zero-shot pruning
○ Structured pruning, unstructured pruning, N:M pruning
○ Weight pruning, activation pruning
○ Static pruning and dynamic pruning
○ Pruning for inference, pruning for training



65

Static vs Dynamic Pruning
● Conventional pruning adopts static pruning criteria and permanently removes components.
● Dynamic pruning exploits input-specific characteristic pruning criteria and preserves the entire 

network structures and accelerates the networks by dynamically skipping unimportant components.

Gao, Xitong, et al. "Dynamic channel pruning: Feature boosting and suppression." arXiv preprint arXiv:1810.05331 (2018).

● a channel-wise importance 
measure is generated.



66

Taxonomy of Pruning
● Pruning techniques can be classified from different perspectives

○ Iterative pruning, zero-shot pruning
○ Structured pruning, unstructured pruning, N:M pruning
○ Weight pruning, activation pruning
○ Static pruning and dynamic pruning
○ Pruning for inference, pruning for training



67

Pruning during DNN Training

McDanel, Bradley, Helia Dinh, and John Magallanes. "Accelerating dnn training with structured data gradient pruning." 
2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022.



68

Topics
● Why pruning?

○ Reduce running cost
○ Reduce storage 

● General pruning techniques
● Transformer pruning
● Large model pruning



69

Multi-headed Attention

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural information 
processing systems 32 (2019).

● Q, K, V tensors are broken into multiple components along the embedding 
dimension.

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E)
○ (B,L,E) →  (B, M, L, E/M)  → (B, M , L, D) , where D=E/M

● All the following operations can be performed independently over each head M.
○ QK丅→(B, M, L✖D) ✖ (B, M, D✖L) →  (B, M, L✖L) 
○ Softmax(QK丅) →  (B, M, L✖L) 
○ Softmax(QK丅) ✖ V → (B, M, L✖L) ✖ (B, M, L✖D) → (B, M, L✖D) → (B✖L✖E) 



70

Multi-Head Attention

linearE×E

B×L×E

B×L×E

QKT

B×L×E2 B×M×L2×D= 
B×L2×E

x

B, M, L✖D B, M, L✖D

B, M, L✖L

B, M, L✖L

B, M, L✖D

B, M, L✖D

B×M×L2×D= 
B×L2×E

● The introduction of multiple heads do not change the 
computational cost of the transformer.



71

Pruning on Transformers: Token Pruning
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

+ Y

x

Softmax

Scale

x
Reshape

linear



72

Q K
(3,128) (3,128)

3
3

QKT

Scale and 
softmax3

3
QKT 3

3

3
3

3
128

V
3

128

linear

(3,128)

(3,128)

Step 2

Step 3

Step 4

Step 5

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

Pruning on Transformers: Token Pruning

Find unimportant 
tokens



73

Pruning on Transformers: Token Pruning

Kim, Sehoon, et al. "Learned token pruning for transformers." Proceedings of the 28th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining. 2022.

● One simple approach involves computing the importance score of each token, and 
remove the tokens whose importance score is lower than a predefined threshold.



74

Pruning on Transformers: Token Pruning

● Tokens and heads can be pruned jointly, the removed tokens and heads will result in a 
much reduced computation for all the following layers.

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head 
pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.



75

Pruning on Transformers: Token Pruning

● Not all the tokens are necessary to generate the final results.
● Unimportant tokens can be removed progressively as an input sequence passes through 

transformer layers.
Kim, Sehoon, et al. "Learned token pruning for transformers." Proceedings of the 28th ACM SIGKDD Conference on 
Knowledge Discovery and Data Mining. 2022.



76

New Pruning Dimension: Head 
Pruning● In additional to the valuewise and channelwise pruning, transformer allows for 

a new type of pruning: multi-head pruning.

(1, 197, 768) → (1, 12, 197, 64) →  (1, 4, 197, 64)
Input Input with 12 heads Input with 4 heads

Voita, Elena, et al. "Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned." 
arXiv preprint arXiv:1905.09418 (2019).



77

Multi-headed Attention
● We observe that the majority of attention heads can be removed without 

deviating too much from the original score. Surprisingly, in some cases 
removing an attention head results in an increase in BLEU/accuracy.

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?" Advances in neural information 
processing systems 32 (2019).



78

Pruning on Transformers: Head Pruning

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

+ Y

x

Softmax

Scale

x
Reshape

linear

● Xi is an embedded vector of ith token.
● There are in total n tokens.
● The output vector of qth token can be expressed 

as:

● If we further expressed with multi-head attention, the 
output vector can be expressed as:

● Where the εh are mask variables with values in {0, 1}. 



79

Topics
● Pruning in CNN and transformers

○ Reduce running cost
○ Reduce storage

● Sparsity encoding
● General pruning techniques
● Transformer pruning
● Large model pruning



80

GPT-2

Pruning on Large Models: KV cache Pruning

Block N

Block 1

Block 2

Block 3

…

FFN

SA

GPT-2

AI

<BOS>

Round 1 Round 2 Round 3 Round 4

● Each token is generated in an autoregressive manner.

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

GPT-2 GPT-2

is

GPT-2

awesome <EOS>

<BOS>,AI,is,awesome<BOS>,AI <BOS>,AI,is

GPT-2



81

Pruning on Large Models: KV cache Pruning

FFN

Block

Block

Linear &
Softmax

Embedding

Normalization

Normalization

SA

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.



82

Pruning on Large Models: KV cache Pruning
Key vectors Value vectors

Block

Block

Linear &
Softmax

Embedding

Machine

Learning

“Machine”

Block

Block

Linear &
Softmax

Embedding

Learning

is

Block

Block

Linear &
Softmax

Embedding

fantastic

is
Round 1 Round 2 Round 3

KV cache

“Machine”

KV cache

“Learning”

“Machine”

KV cache

“Learning”

“is”



83

Pruning on Large Models: KV cache Pruning

Ge, Suyu, et al. "Model tells you what to discard: Adaptive kv cache compression for llms." arXiv preprint arXiv:2310.01801 
(2023).

● We show the attention score of each token.
● Different attention heads usually have different 

importance scores on KV vectors.
● The importance of KV vectors also varies across 

layers.



84

LLM Pruning: Wanda

Sun, Mingjie, et al. "A simple and effective pruning approach for large language models." arXiv preprint arXiv:2306.11695 
(2023).

● A zero-shot pruning method.
● Prune the weights by considering the input statistics.
● For each weight, if the corresponding input’s magnitude is large, the output will also be large.
● Need some training samples for calibration.


